9.3 Coordinate transformations (astronomical)

Time in astronomy

anne in astronomy				
Julian day number ^a			JD	Julian day number
JD = D - 32075 + 1461 * (Y + 4800 + (M - 14)/12)/4			D	day of month number
+367*(M-2-(M-14)/1	2*12)/12		Y	calendar year, e.g., 1963
-3*((Y+4900+(M-14))	/12)/100)/4	(9.1)	M	calendar month (Jan=1)
			*	integer multiply
Modified Julian day $MJD = JD - 24000$	000 5	(0.2)	/	integer divide
Julian day $MJD = JD - 24000$ number	000.3	(9.2)	MJD	modified Julian day number
Day of week $W = (JD + 1)$ mo	d 7	(9.3)	W	day of week (0=Sunday, 1=Monday,)
			LCT	local civil time
Local civil $LCT = UTC + TZC$	C+DSC	(9.4)	UTC	coordinated universal time
time	- 1 - 2 -	(-11)	TZC	time zone correction
			DSC	daylight saving correction
Julian centuries $T = \frac{JD - 2451545}{36525}$.5	(9.5)	T	Julian centuries between 12 ^h UTC 1 Jan 2000 and
centuries 36525		(5.5)		$0^{\rm h}$ UTC $D/M/Y$
$GMST = 6^{h}41^{m}50^{s}$.54841		G) (G)	
Communicate	84 ^s .812866 <i>T</i>		GMS	$Γ$ Greenwich mean sidereal time at 0^h UTC $D/M/Y$
sidereal $+0^{\circ}.0931$				(for later times use
time		(0.5)		1s = 1.002738 sidereal
$-0^{s}.0000$	0062 <i>T</i> ³	(9.6)		seconds)
Local	0		LST	local sidereal time
sidereal LST = GMST + $\frac{\lambda}{14}$	_	(9.7)	λ°	geographic longitude,
time	,	·		degrees east of Greenwich


^aFor the Julian day starting at noon on the calendar day in question. The routine is designed around integer arithmetic with "truncation towards zero" (so that -5/3 = -1) and is valid for dates from the onset of the Gregorian calendar, 15 October 1582. *JD* represents the number of days since Greenwich mean noon 1 Jan 4713 BC. For reference, noon, 1 Jan 2000 = *JD*2451545 and was a Saturday (W = 6).

Horizon coordinates^a

Hour angle	$H = LST - \alpha$	(9.8)	LST H	local sidereal time (local) hour angle
			α	right ascension
Equatorial	$\sin a = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H$	(9.9)	δ	declination
to horizon	$-\cos\delta\sin H$	(0.40)	а	altitude
to nonzon	$\tan A \equiv \frac{\cos \delta \sin \theta}{\sin \delta \cos \phi - \sin \phi \cos \delta \cos \theta}$	(9.10)	A	azimuth (E from N)
	sino c osφ sin φ c oso c os n		ϕ	observer's latitude
Horizon to equatorial	$\sin \delta = \sin a \sin \phi + \cos a \cos \phi \cos A$ $-\cos a \sin A$	(9.11)		+ + + + + + + + + + + + + + + + + + +
equatorial	$\tan H \equiv \frac{1}{\sin a \cos \phi - \sin \phi \cos a \cos A}$	(9.12)		- - +

^aConversions between horizon or alt-azimuth coordinates, (a,A), and celestial equatorial coordinates, (δ,α) . There are a number of conventions for defining azimuth. For example, it is sometimes taken as the angle west from south rather than east from north. The quadrants for A and H can be obtained from the signs of the numerators and denominators in Equations (9.10) and (9.12) (see diagram).

Ecliptic coordinates^a

Obliquity of the ecliptic	$\varepsilon = 23^{\circ}26'21''.45 - 46''.815 T$ $-0''.0006 T^{2}$ $+0''.00181 T^{3}$	(9.13)	ε Τ	mean ecliptic obliquity Julian centuries since J2000.0 ^b
Equatorial to ecliptic	$\sin \beta = \sin \delta \cos \varepsilon - \cos \delta \sin \varepsilon \sin \alpha$ $\tan \lambda \equiv \frac{\sin \alpha \cos \varepsilon + \tan \delta \sin \varepsilon}{\cos \alpha}$	(9.14) (9.15)	α δ λ β	right ascension declination ecliptic longitude ecliptic latitude
Ecliptic to equatorial	$\sin \delta = \sin \beta \cos \varepsilon + \cos \beta \sin \varepsilon \sin \lambda$ $\tan \alpha \equiv \frac{\sin \lambda \cos \varepsilon - \tan \beta \sin \varepsilon}{\cos \lambda}$	(9.16) (9.17)		+ + + + + + + + + + + + + + + + + + +

^aConversions between ecliptic, (β, λ) , and celestial equatorial, (δ, α) , coordinates. β is positive above the ecliptic and λ increases eastwards. The quadrants for λ and α can be obtained from the signs of the numerators and denominators in Equations (9.15) and (9.17) (see diagram).

^bSee Equation (9.5).

Galactic coordinates^a

Galactic frame	$\alpha_{g} = 192^{\circ}15'$ $\delta_{g} = 27^{\circ}24'$ $l_{g} = 33^{\circ}$	(9.18) (9.19) (9.20)	$\alpha_{ m g}$ $\delta_{ m g}$	right ascension of north galactic pole declination of north galactic pole
Equatorial to galactic	$\sin b = \cos \delta \cos \delta_{\rm g} \cos(\alpha - \alpha_{\rm g}) + \sin \delta \sin \delta_{\rm g}$ $\tan(l - l_{\rm g}) \equiv \frac{\tan \delta \cos \delta_{\rm g} - \cos(\alpha - \alpha_{\rm g}) \sin \delta_{\rm g}}{\sin(\alpha - \alpha_{\rm g})}$	(9.21) (9.22)	$l_{ m g}$	ascending node of galactic plane on equator
Galactic to	$\sin\delta = \cos b \cos \delta_{\rm g} \sin(l - l_{\rm g}) + \sin b \sin \delta_{\rm g}$	(9.23)	δ α	declination right ascension
equatorial	$\tan(\alpha - \alpha_g) = \frac{\cos(l - l_g)}{\tan b \cos \delta_g - \sin \delta_g \sin(l - l_g)}$	(9.24)	b l	galactic latitude galactic longitude

^aConversions between galactic, (b,l), and celestial equatorial, (δ,α) , coordinates. The galactic frame is defined at epoch B1950.0. The quadrants of l and α can be obtained from the signs of the numerators and denominators in Equations (9.22) and (9.24).

Precession of equinoxes^a

In right ascension	$\alpha \simeq \alpha_0 + (3^{\mathrm{s}}.075 + 1^{\mathrm{s}}.336\sin\alpha_0\tan\delta_0)N$	(9.25)	$\begin{array}{c} \alpha \\ \alpha_0 \\ N \end{array}$	right ascension of date right ascension at J2000.0 number of years since J2000.0
In declination	$\delta \simeq \delta_0 + (20''.043\cos\alpha_0)N$	(9.26)	$\delta \delta \delta_0$	declination of date declination at J2000.0

^aRight ascension in hours, minutes, and seconds; declination in degrees, arcminutes, and arcseconds. These equations are valid for several hundred years each side of J2000.0.

